
U

VA
!

A
!

C
K
"

K
"

P
Q
#

Q
#

R
J
$

J
$

G
10
!

10
!

University of Alberta
Computer Poker Research Group

Michael Johanson, Nolan Bard, Marc Lanctot, Richard Gibson, Michael Bowling
University of Alberta, Canada

Efficient Nash Equilibrium Computation through
Monte Carlo Counterfactual Regret Minimization

10-2

10-1

100

101

102

103

102 103 104 105

Be
st

 re
sp

on
se

 (m
bb

/g
)

Time (seconds)

CS
OPCS
SPCS

PCS

10-1

100

101

102

103

104

102 103 104 105

Be
st

 re
sp

on
se

 (m
bb

/g
)

Time (seconds)

CS
OPCS
SPCS

PCS

[2-Round, 1-Bet] Holdʼem
A small poker game where strategies can be

quickly created and evaluated.
♣ Y-axis shows distance to Nash equilibrium
♦ Game has 16 million information sets
♠ First PCS datapoint has already converged
 closer than final CS datapoint!

[2-Round, 4-Bet] Holdʼem
A larger test domain that increases the

playersʼ action space
♣ 94 million information sets
♦ PCS curve is both lower and has a steeper
 slope

-50

-40

-30

-20

-10

 0

 10

 0 200000 400000 600000 800000O
ne

-o
n-

O
ne

 P
er

fo
rm

an
ce

 (m
bb

/g
)

Time (seconds)

CS
PCS

10-4

10-3

10-2

10-1

103 104 105

Be
st

 R
es

po
ns

e

Time (seconds)

CS
PCS

-0.08

-0.06

-0.04

-0.02

0.00

0 10000 20000 30000 40000 50000

O
ne

-o
n-

O
ne

 P
er

fo
rm

an
ce

Time (seconds)

CS
PCS

Limit Texas Holdʼem: Abstract Best Response
♣ Real game: 10^14 information sets. Abstraction lets us produce tractable games.
♦ Increasing abstraction granularity results in better real game strategies, but
 increases computational costs
♠ PCS surpasses CS as abstraction size increases

CS
PCS

CS
PCS

CS
PCS

CS
PCS

102

101

100

10-1

102

101

100

10-1

101 102 103 104 105 106 101 102 103 104 105 106

5 Buckets / round
3.6m Infosets

8 Buckets / round
23.6m Infosets

10 Buckets / round
57.3m Infosets

12 Buckets / round
118.6m Infosets

A
bs

tr
ac

t B
es

t R
es

po
ns

e
(m

bb
/g

)

Computation Time (seconds)

Limit Texas Holdʼem:
In-Game Performance

♣ In large abstractions, we can evaluate by
 in-game performance against a strong
 opponent (Hyperborean2011)

♦ Note the horizontal distance. CS must be
 run for much longer to reach the same
 level of performance.
♠ Abstraction has 880m information sets.

(2,2) Bluff: Exploitability
 Bluff is a 2-player dice game. Each player
 secretly rolls 2 dice and players bid on
 how many of each side was rolled.

 No public chance events, so PCS does
 efficient complete traversals.

 PCSʼ curve is both lower and steeper at
 each timestep.

(2,2) Bluff: In-Game Performance
 In this graph, we use the PCS and CS
 strategies to play against the final PCS
 strategy.

 PCS generates strong strategies much
 more quickly than CS. Consider the
 horizontal distance.

Chance Sampling
(CS), 2007

O(1) terminal node evaluation
[2-4] speed: 1.25m iter/sec

Sample one event for us
Update our strategy considering one
opponent private chance event.

Public Chance Sampling
(PCS)

Possible O(n) terminal node evaluation
[2-4] speed: 709 iter/sec

Sample public chance events, but
consider all n private events for each
player

Opponent / Public
Chance Sampling (OPCS)

O(n) terminal node evaluation
[2-4] speed: 1414 iter/sec

Update all n of our chance events with
respect to one sampled opponent event.

Self / Public
Chance Sampling (SPCS)

O(n) terminal node evaluation
[2-4] speed: 1952 iter/sec

Sample one event for us, but update
while considering all n opponent private
chance events.

Slower iterations,
More updates per
iteration

Slower iterations,
Lower variance

Same time complexity,
Lower variance

Same time complexity,
More updates per
iteration

Counterfactual Regret
Minimization (CFR)

In two-player zero-sum games, Nash equilibrium
strategies (minimax strategies) are unexploitable: they
will do no worse than tie on expectation against any
opponent.

CFR is a state-of-the-art iterative algorithm for
approximating Nash equilibria in two-player zero-sum
games. It resembles self-play over a series of T games.

By minimizing regret (improving the strategy) at each
decision point independently, the entire strategy
converges towards a Nash equilibrium.

CFR is memory efficient, straightforward to
implement, and easy to optimize and parallelize.

Monte-Carlo CFR is a family of sampling variants that
converge much faster in practice than the base
algorithm. This paper proposes Public Chance
Sampling and shows that it converges faster than
earlier approaches.

♦

♣

♥

♠

♦

“Vanilla” CFR, 2007
In each iteration, enumerate all chance
events and update the complete game
tree. Not useful in practice.

Very fast but
noisy iterations.

Fast Terminal Node Evaluation
(IJCAI 2011)By exploiting game structure,

a fast O(n) terminal evaluation
may be possible when comparing
n private states for each player.

This allows PCS to do the work of
both OPCS and SPCS with the same
time complexity!

Obvious O(n2) algorithm:

for(each of my hands x)
 for(each of their hands y)
 if(x > y)
 util[x] += payoff * P(y)
 else if(x < y)
 util[x] -= payoff * P(y)

Faster O(n) algorithm:

p_lose = total_prob; p_win = 0;
for(each hand x) //red arrow
above
 p_lose -= prob[x]
 util[x] = (p_win - p_lose)*payoff
 p_win += prob[x]

Algorithm outline:
Initialize two strategies and repeatedly
traverse the game tree. This resembles a
self-play algorithm.

At each decision I, use recursion to get
the value of each action a and
accumulate regret:

Update the strategies proportional to their
accumulated positive regret:

Following this procedure, the average
strategy used by the players converges
to a Nash equilibrium.

Sampling some or all of the chance
events lets us perform fast, noisy updates,
and this converges faster. We can trade
off between:

 Iteration Speed
 Strategy updates per iteration
 Accuracy in estimating action values

♦
♣
♥

