
Asymmetric Abstractions
for Adversarial Settings

Nolan Bard, Michael Johanson, and Michael Bowling
{nolan, johanson, bowling}@cs.ualberta.ca

U

VA
!

A
!

C
K
"

K
"

P
Q
#

Q
#

R
J
$

J
$

G
10
!

10
!

University of Alberta
Computer Poker Research Group

Motivation Empirical Results
Agent

Environment

• Game rules are common knowledge
• Representation of each agent's

(unknown) behaviour is needed.
• Abstraction choices represent beliefs

about other agents' capabilities
• Finer grained abstractions not

necessarily better

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

E
[H

S
2
]

E[HS]

Bucket 1 (E[HS] 0.38)

Bucket 2 (E[HS] 0.43)

Bucket 3 (E[HS] 0.49)

Bucket 4 (E[HS] 0.55)

Bucket 5 (E[HS] 0.64)

2s7h
Js2h

6s7s 4s4h

AsAh

12-5 12-8 12-12 8-5 8-8 8-12 5-5 5-8 5-12 Mean RGBR Size
12-5 0 -3 -6 20 18 16 43 41 41 18.970± 0.128 435.757 2424 MB
12-8 3 0 -3 23 22 20 36 35 35 18.890± 0.143 378.919 2821 MB

12-12 6 3 0 16 16 14 29 28 30 15.842± 0.175 289.227 4708 MB
8-5 -20 -23 -16 0 -3 2 22 21 24 0.662± 0.121 379.659 537 MB
8-8 -18 -22 -16 3 0 4 16 15 20 0.276± 0.144 312.762 934 MB

8-12 -16 -20 -14 -2 -4 0 12 12 16 �1.985± 0.099 255.845 2821 MB
5-5 -43 -36 -29 -22 -16 -12 0 3 7 �16.189± 0.112 317.1 140 MB
5-8 -41 -35 -28 -21 -15 -12 -3 0 5 �16.751± 0.153 283.37 537 MB

5-12 -41 -35 -30 -24 -20 -16 -7 -5 0 �19.714± 0.190 234.351 2424 MB

12-FULL -22 -22 -21 -14 -13 -11 -2 -1 2 �11.526± 0.221 87.2765 3450 MB
8-FULL -36 -36 -32 -26 -24 -21 -14 -12 -7 �23.093± 0.070 101.256 1563 MB
5-FULL -54 -50 -45 -42 -38 -35 -29 -26 -21 �37.585± 0.150 122.385 1166 MB

104 105 106 107

Number of observations of opponent

60

65

70

75

80

85

90

95

100

105

E
xp

lo
ita

tio
n

(m
bb

/g
)v

s.
til

te
d

8-
bu

ck
et

DBR-U12-R12-M5
DBR-U12-R12-M8
DBR-U12-R12-M12

0 100 200 300 400 500 600 700 800
Real Game Exploitability (mbb/g)

40

50

60

70

80

90

100

110

120

130

E
xp

lo
ita

tio
n

(m
bb

/g
)v

s.
til

te
d

8-
bu

ck
et

DBR-U12-R8-M8-10k
DBR-U12-R8-M8-10m
DBR-U12-R12-M8-10k
DBR-U12-R12-M8-10m

0 100 200 300 400 500 600 700 800
Real Game Exploitability (mbb/g)

20

40

60

80

100

120

140

E
xp

lo
ita

tio
n

(m
bb

/g
)v

s.
til

te
d

8-
bu

ck
et

RNR-U8-R8
RNR-U8-R12
RNR-U12-R8
RNR-U12-R12

0 100 200 300 400 500 600 700 800
Real Game Exploitability (mbb/g)

40

50

60

70

80

90

100

110

120

130

E
xp

lo
ita

tio
n

(m
bb

/g
)v

s.
til

te
d

8-
bu

ck
et

RNR-U12-R12
DBR-U12-R12-M5-100k
DBR-U12-R12-M8-100k
DBR-U12-R12-M12-100k

Nash Equilibrium Approximation

Robust Counter-Strategies

Observations
• 5-5→8-8→12-12: ⬆ 1-vs-1, ⬇ RGBR. Not guaranteed but often assumed anyways.
• 5-5→8-5→12-5: ⬆ 1-vs-1, ⬆ RGBR. First abstraction pathology in large game.
• 5-5→5-8→5-12→5-FULL: ⬇ mean 1-vs-1, ⬇ RGBR. Echoes CFR-BR results.
• 12-5→12-12→12-FULL: Symmetric abstractions optimize neither 1-vs-1 nor RGBR
• Demonstrates trade-off between 1-vs-1 and RGBR performance

Limit Texas Hold'em

State Reward Actions

Extensive-Form Games

What granularity of abstraction?
• Trade-off between resources vs. fidelity
• Single agent: use finest tractable abstraction

• Multiagent: investigated in this work

Problem: large state spaces
• Abstraction may be needed
• Considerable prior work on

feature extraction but...

Prior asymmetric abstraction work
Pathologies

[Waugh et al., AAMAS 2009]
CFR-BR

[Johanson et al., AAAI 2012]

• Player actions: fold, call, raise
• Chance

• 52 card deck
• 2 private cards per player
• 3/1/1 public on flop/turn/river

• Real game > 1014 infosets
Feature Extraction
• Player actions unabstracted
• Cards→E[HS2] percentile buckets

-50

Raise

Raise

Call

Raise

Call

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

E
[H

S
2]

E[HS]

Bucket 1 (E[HS] 0.38)
Bucket 2 (E[HS] 0.43)
Bucket 3 (E[HS] 0.49)
Bucket 4 (E[HS] 0.55)
Bucket 5 (E[HS] 0.64)

2s7h
Js2h

6s7s 4s4h

AsAh

Figure 1: Abstraction of the first round of Texas hold’em poker,
dividing 1326 hands into 5 percentile E[HS2] buckets.

Abstraction Information Sets CFR Memory
5-Bucket 3624290 140 MB
8-Bucket 23551424 934 MB
12-Bucket 118671936 4708 MB

Table 1: Sizes of percentile abstractions.

typically results in a consistent decrease of an abstract strategy’s
real game exploitability [8, 7].

In the limit Texas hold’em poker game we will use for our
experiments, abstraction is applied only to the chance events
in the game, and not to the players’ actions. The abstraction
task is thus simplified to finding similar sets of cards which
are mapped together to form buckets. In our experiments, we
will use two well-known abstraction features called expected
hand strength (E[HS]) and expected hand strength squared
(E[HS2]) [14; 7, p. 5]. E[HS] is a heuristic that assigns
a value in [0,1] to each hand, representing the probability of
winning against a randomly sampled opponent hand while taking
the expectation over any unseen public cards. E[HS2] measures
the expected square of hand strength, which promotes weak hands
that might become strong, such as flush draws and straight draws.
A percentile abstraction groups hands with similar feature values
into approximately equal sized buckets. On the first round of
the game, for example, a 5-bucket percentile E[HS2] abstraction
groups the 1326 possible hands of cards into the buckets shown in
Figure 1.

For each of the next three rounds, new public cards are revealed
and each round’s abstraction contains larger sets of cards that must
be abstracted. This is done by taking each previous round’s bucket,
considering all ways to deal the new public cards to the hands in
that bucket, and then reapplying the percentile E[HS2] technique
to that set of hands. The abstractions we will investigate in this
paper have the perfect recall property, in which hands that are
mapped together on one round must also be mapped together on all
earlier rounds. By convention, the same branching factor n is used
on each round. In this paper, we will consider three standard sizes
of abstractions used in prior research in abstraction techniques,
with branching factors of 5, 8 and 12 buckets on each round. The 5
and 8 bucket abstractions will be partitioned according to percentile
divisions of E[HS2], while the 12-bucket abstraction will first
divide the hands into six E[HS2] sets, which are further split into
two E[HS] sets. The sizes of these abstract games and the amount
of memory required by CFR to solve them is shown in Table 1.

2.4 Robust Counter-Strategies
Nash equilibrium strategies are useful in two player games

because they minimize a player’s exploitability. However, such
strategies do not attempt to exploit an opponent’s errors, and
typically only win by a small margin against exploitable opponents.
Since the goal of poker is to maximize winnings, a related line of
research is to compute counter-strategies that exploit the errors of
opponents or classes of opponents.

While a best response strategy is by definition a strategy that
maximizes utility against a specific opponent, they make no at-
tempt to limit their own exploitability and may lose badly when
used against other opponents. Robust counter-strategies offer a
compromise between exploiting an opponent and minimizing one’s
own exploitability. In particular, an ✏-safe best response is a strat-
egy from the set of strategies exploitable for no more than ✏ that
maximizes utility against a particular opponent [10]. While best
responses are then ✏-safe for sufficiently high values of epsilon, we
are more interested in ✏-safe best responses that risk losing an ac-
ceptably small amount.

The Restricted Nash Response (RNR) algorithm [9] is an
efficient way to compute ✏-safe best responses. It takes as input
a target opponent’s strategy �fix and a parameter p 2 [0, 1] which
trades off between minimizing exploitability and exploiting the
opponent. We then use CFR or any other game solving algorithm
to compute a Nash equilibrium for a modified game, where one
“restricted” player is forced with probability p at the start of each
game to play according to �fix, and with probability (1� p) is free
to choose their own actions. We call these two parts of the restricted
player’s strategy their model and response, respectively. The other
“unrestricted” player is always free to choose their actions. When
we solve this modified game, the unrestricted player’s strategy will
converge to an ✏-safe best response for some ✏. Decreasing p
results in less exploitable strategies, with an unexploitable Nash
equilibrium occurring when p = 0. Increasing p results in
strategies that exploit the opponent, with a best response occurring
when p = 1. The Restricted Nash Response algorithm generates
the Pareto-optimal set of trade-offs between these goals.

The Restricted Nash Response algorithm is difficult to use in
practice, since we often do not have access to the opponent’s
strategy. Typically only observations of an opponent’s behaviour
are available when constructing a robust counter-strategy. In this
setting, the related Data Biased Response (DBR) algorithm [6]
allows us to create robust counter-strategies that exploit flaws
demonstrated in the observations. First, we choose an abstraction
to use for an opponent model. Next, we map the real game
observations of our opponent into the abstract game and create
our model from frequency counts of the observed actions. Finally,
as with the RNR algorithm, we solve a modified game in which
one player is sometimes forced to play according to the opponent
model, and the other player converges to a robust counter-strategy.
In DBR, the probability of being forced to follow the model is
applied at each information set (as opposed to the start of the
game), and varies with the number of times the opponent was
observed at that information set, reflecting the model’s varying
accuracy throughout the game. By varying a single parameter
P
max

, the maximum probability of following the model, we can
produce a range of counter-strategies similar to RNR that trade off
between minimizing exploitability and increasing exploitation. If
too few observations are supplied to DBR, it fails gracefully by
returning less exploitable strategies that are more similar to a Nash
equilibrium. Increasing the number of observations allows us to
generate counter-strategies that exploit more opponent errors while
still limiting their worst-case loss.

p(1-p)

Free
Response Model

Free
Response Model

p(I)1 - p(I)

Counterfactual Regret Minimization (CFR)
[Zinkevich et al., NIPS 2008]
• Iterative self-play algorithm
• State-of-the-art algorithm for approximating

Nash in 2-player zero-sum games

Restricted Nash Responses
[Johanson et al., NIPS 2007]
• Good for known strategies

Data Biased Response
[Johanson et al., AISTATS 2009]
• More effective for

models based on data
• Model's abstraction

impacts data sparsity

Free
Response

Free
Response

vs

vs
50%

vs
25%

75%50%

vs
25%

75%

Experimental Design
• Versus "tilted" 8-bucket strategy
• Observations gathered with probe
• Varied: abstractions, quantity of data,

RNR/DBR confidence
• First evaluation using real game worst-

case performance

Symmetric Asymmetric
Allocating Abstraction Resources

• Tailor model size to quantity of data
• RNR U8s-R8s→U12s-R8s: ⬆1-vs-1,
⬆RGBR. Similar performance trade-off.

• RNR U8s-R8s→U8s-R12s: ⬇RGBR.
Strictly dominant RNR performance.

• DBR trade-off depends on data
• Positive model weight: can be less

exploitable than abstract Nash.
• Potentially "free" exploitation

